
Localization and quantum Hall effect in a two-dimensional periodic potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 7941

(http://iopscience.iop.org/0953-8984/6/39/015)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Php.: Condens. Maner 6 (1994) 7941-7954. printed in the UK 
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Abstract. A numerical study has been made of two-dimensional electrons in the lowest Landau 
level in the presence of a periodic potential and a random potential. The Hall conductance, 
density of states and density of current-canying states are calculated when disorder is varied. 
The results show that the states in a subband carrying quantized Hall conductance 1 ( I  > I 
for example, and similarly f < -1) are split into two carrying unit conductance and f - 1, 
respectively, as disorder is introduced. The states carrying unit Hall current will merge and 
annihilate with that carrying - I  in the neighbouring subband separated by a small gap when 
disorder is i n c p s e d  and the gap vanishes. Based on this, a diagram of currentsanying states 
against disorder has been proposed. There is also a calculation on the localization length, and it 
is found that extended states appear at singular energies under certain conditions. Futhermore, 
it has been shown that a plateau in the Hall conductance. rather than a rapid oscillation. can be 
measured as a function of magnetic field fat one-third-filled Landau bands. Similar ESUIIS have 
been obtained for tight-binding electrons in a magnetic field with random site energies. 

1. Introduction 

The discovery of the integer quantum Hall effect [I] in otherwise totally localized [2] two- 
dimensional disordered electron systems indicates the coexistence of both extended and 
localized states in a magnetic field [3]. Various studies, including percolation theory [4, 
51, one-parameter scaling theory [&SI and calculation of Thouless number [9], have been 
made of the nature of the localization in Landau levels. It is generally believed that the 
localization length diverges at the centre of Landau levels as a power law [4-91. Meanwhile, 
the quantization of the Hall conductance has been found to be of topological origin [10-13]. 
This was further exploited to show that the topology of the wavefunction can be used as a 
probe to distinguish between localized and extended states [14]. Based on this, numerical 
calculations [I51 have yielded an exponent of the localization length in good agreement 
with the analytical prediction [5]. 

A natural extension is to split Landau levels, as could arise in the presence of 
weak periodic potentials. This, on its own, is very ‘interesting because it generates 
the commensurability problem with several competing length scales involved. A two- 
dimensional cosine potential is known to give the Harper equation [16] and its Hofstadter 
spectrum [17], which have been extensively studied. The Hall conductance of the subbands 
has been obtained explicitly in terms of solutions of the Diophantine equation [IO, 181. Of 
course, the formulation leading to the topological explanation for the quantum Hall effect 
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was originally made in this system [lo]. In the limit of tight-binding electrons in a magnetic 
field with random site energies, Ando has calculated the localization length numerically [I91 
by the Thouless number [ZO, 211, and has obtained the Hall conductance [ZZ]. 

Recently, several experiments seem to indicate the possible realization of the Hofstadter 
spectrum [23-2.51. Lateral superlattices have been generated in high-mobility GaAdAlGaAs 
heterostructure samples. The period of the superlattice is typically about 300 nm, so a 
magnetic field of a few tesla is able to give a magnetic flux in each unit cell of the 
same order as the flux quantum. Therefore the splitting of Landau levels can be resolved 
experimentally. It has been shown [24, 26, 271 that the band splitting has to be taken into 
account in order to understand the experimental measurements on the longitudinal resistance 
123, 241. 

The band splitting, however, can be demonstrated more directly in the Hall conductance. 
The usual plateau in the Hall conductance will be replaced by some fine structures if the 
Landau level is split. In this paper, the possible shape of these fine structures is investigated. 
First of all, disorder should be considered in a real experimental sample. Therefore the 
Hofstadter spectrum will be modified accordingly. In section 2, the general formulation of 
this numerical calculation will be presented. The method used to calculate HaIl conductance 
follows that of Thouless etal [lo, 281. This study is focused on how the inclusion of disorder 
affects the result obtained by Thouless et al [lo] and Stieda [18]. The distribution of the 
Hall conductance in the split Landau levels has been calculated for two fractions of the 
flux. It has, been shown that the gaps vanish as disorder is increased, and the Hall currents 
carried by a subband split, merge and annihilate with others. This results, for sufficiently 
strong disorder, in a broadened Landau band where no band splitting occurs and the Hall 
current is carried at the centre. 

In section 3, the possible experimental outcome for the Hall conductance has been 
studied. It is shown that, taking localization into account, a plateau can be measured as a 
function of magnetic field for one-third filling of the Landau level. The localization length 
has been obtained by the Thouless number method. In section 4, similar conclusions are 
drawn for the tight-binding electrons. Moreover, it can be concluded that the Hall current 
is still carried by a singular energy in a subband if the Hall conductance is either 1 or -1. 
However, a doubt remains if a subband carries a higher Hall current or there is a (1, -1) 
pair present, where the possibility of mobility edges exists. 

The above results are summarized in section 5, where a qualitative phase diagram of 
the current-canying states is proposed as a function of disorder. 

2. Split Landau levels 

2.1. General formulation 

The system studied in this paper is a two-dimensional non-interacting electron gas which is 
subject to a uniform magnetic field and modulated by a weak periodic potential. Rectangular 
geometry is assumed for the periodic modulation; it is possible to generalize the results, at 
least numerically, to other geometries. This defines a unit cell of a x b. The magnetic field 
is perpendicular, and the magnetic flux through each unit cell is given by 

where Go = h / e  is the flux quantum, and p .  q are mutually primed integers. The magnetic 
unit cell is defined as qa x 6, such that an integer number of flux quanta are included. In 
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general, one needs to consider longer periods, LI and Lz, than the magnetic unit cell. 
This becomes necessary in the presence of disorder. However, L1 and LZ should be 
commensurate with the magnetic unit cell, namely, 

LI = qaMl LZ = bMz (2.2) 

where MI, MZ are integers. 

2.1.1. Projection o n o  Landau levels. In the limit of strong magnetic fields, the Hamiltonian 
can be projected onto the Landau levels IN,  X), explicitly, 

where EN = ( N  + i)?iwc, with the Landau level index N and the cyclotron frequency 
U,. The potential V consists of the periodic modulation V, and the disorder potential V,. 
The guiding centre is reflected in the variable X ,  which is expressed in terms of a set 
of integers, X = (s, n, j ) .  The definition of these integers is implied in equation (2.5). 
The wavefunction IN, X )  can be constructed by the usual Landau wavefunctions x N ( x ) ,  
explicitly [lo], 

' $ N , x . ~ @ .  Y) = exp(iklx -I- ikzY)fN.x.k(x, Y) (2.4) 

where 

~N.X.~(X,  y)  = L;'" 
m 

x,v(x - R - lZk2)exp[-ikl(x - R) + i y ~ j l ' ~  ( 2 . 5 ~ )  
r=-m 

and 

R = ~ L I  +sqa+nqa /p+2n lZ j /Lz  (2.5b) 

with the magnetic length l and the wavenumber k = ( k ~ ,  kz). It is obvious in equation (2.5) 

The boundaq conditions can be obtained by magnetic translation. Equations (2.4) and 
-that these integers are bound by 0 < s < MI - 1, 1 < n < p and 0 < j < MZ - 1. 

(2.5) give 

@N,x,~(x + L I .  Y).= exp(iL,y/lz + ik~L~) '$~.x,k(x,  Y) 
(2.6) 

' k N , X . k ( x ,  Y + LZ) = eXP(ikZLZ)'$N.X,k(x, Y). 

Therefore the boundary of the unit cell in k-space is given by 0 < kl < 2n/LI and 

Assuming that the modulation and disorder are weak, lVpl, IVdI << Em, interaction 
between Landau levels can be ignored. The effect of the periodic and disorder potentials is 
taken into account by using perturbation theory. Consider a specific modulation potential 

0 < kz < 2ir/Lz. 

Vp(x. y) = Vocos(Znn/a) + V,'cos(2ny/b). (2.7) 
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This gives the matrix elements 

(N, X’lV,lN, X) = V‘exp(-iquk~/~)S~~+~.~,~+~,-~~j.j, 
+ 2V cos(2nnqlp + 2~q.i/pMz + 4bk~/~)6,,.,S~..~,~j.j, 
+ V’ exp(iqukl lp)G,p+~,,‘p+,,+1Gj.j’ (2.8) 

where V = OSVo exp(-x212/u2)LN(2n212/u2), and LN(x)  is the Laguerre polynomial. 
V‘ can be obtained similarly. This is the Harper equation [16], where the fact that the 
size is larger than the magnetic unit cell has been taken into account. There are p bands 
appearing in the energy spectrum. Diagonalization of equation (2.8) gives pM1 M2 subbands, 
but M l M 2  subbands touch or overlap with each other, and can actually be considered as 
one distinguishable band. In addition, if M2 is commensurate with q ,  there are q subbands 
completely degenerate. In other words, they overlap entirely in the IC-space. This degeneracy 
will be lifted in the presence of disorder potentials. 

The disorder is introduced by randomly placed short-range scatterers. For simplicity, 
&type potentials are chosen, namely [9] 

vd(x, Y) x U a ( T  - Ti) (2.9) 

where U = &VI, and ri are the random sites of the scatterers. The numbers of positive and 
negative scatterers are chosen to be equal. Moreover, the disorder potential & is chosen to 
be periodic, with periods LI and LZ in the x and y directions,~respectively. This reduces the 
Hamiltonian to a finite-size matrix. It has been shown [9] that the zeros of the wavefunction 
can be adjusted to coincide with the locations of the scatterers if the concentration of the 
scatterers is low. Thus disorder involves no change in the energy. Therefore the scatterers 
have to be dense in order to be effective. In this calculation, the averaged space between 
scatterers is set to be shorter than the magnetic length. 

2.1.2. Calculation of Hull conductance. The Hall conductance can be calculated by using 
the Kubo formula. When equation (2.4) is plugged into the corresponding Schrodinger 
equation, the Hamiltonian can be rewritten such that its solution becomes fN.X.k rather than 
+ N , x . ~ .  Therefore the velocity operator can be expressed properly as the partial derivative of 
the Hamiltonian with respect to the wavenumbers kl and kz. Then the use of the first-order 
perturbation theory leads to the Hall conductance given by [10-12] 

(2. IO) 

where the sum runs over all the occupied states. The wavefunction U is Ex fN.X,k in the 
absence of periodic and disorder potentials. However, in general, one needs to diagonalize 
the Hamiltonian, equation (2.3), which is a finite pMrM2 x pMlM2 matrix. Therefore the 
wavefunction U is written as 

(2.11) 

where the coefficient d$ is the eigenvector of the ith eigenvalue. Here the Landau level 
index N is omitted since only the lowest Landau level is considered in a sufficiently strong 
magnetic field. 
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The integral equation (2.10) defines the first Chem class of a U(1) principal fibre bundle 
of the ground-state wavefunctions on a torus. It gives necessarily an integer multiple of 
e2/h. The contributions of d i  and f ~ , b  can be evaluated separately. This basis function 
f ~ , k  gives the Hall conductance of unity in the unit of ez/h, which, however, will be split 
equally to each of the pM1Mz subbands, namely IlpMlMz for each subband, when the 
periodic and disorder potentials split the Landau level. 

To obtain the contribution of the coefficient d i ,  equation (2.10) is used where the 
function U is di(kl, kz) instead. The spatial integration over ( x ,  y )  must also be replaced 
by sum mat ion^ over X. The integral over the k-space unit cell can be converted to a contour 
integral around its boundary. The total phase change of the wavefunction along this contour 
has been shown to give the 'Hall conductance. 

Now let us separate the modulus and the phase of dk. and consequently write 

di(kl ,  k2) = Idk(k1, kdlexp[i8i(kl,k~)l. (2.12) 

The structure of d i  in the k-space can be found easily. As k ,  is changed by 2n/LI, the 
energy and the modulus of the wavefunction remain the same, while the phase 8; may be 
different. When k2 is changed by 2ir/L2, the X component of the modulus can also return, 
but to a different site X'. It can be shown from equation (2.5) that X = (s. n ,  j )  goes to 
X' = (s. n, j + 1). Therefore the total phase change for the closed contour is given by 

as, = ei,(211/~~, ~ s c / L ~ )  - ek,(o, 2 ~ 1 ~ ~ )  - & ( ~ Z / L ~ ,  0) + e;(o, 0) (2.13) 

which is independent of X. However, an overall arbitrary phase of the wavefunction 
involves no change in the system. To solve this. two conditions have been imposed [28], 
explicitly 

(2.141 

This leaves three legs of the contour zero but the one kz = 2rt/L2,0 6 kl C 2afL1, and the 
phase 04 (kl , k2) can be uniquely determined. Numerical calculations have been performed 
on N x N mesh points in the k-plane, where N is large enough that the missing of a phase 
of 2n can be avoided. It can be shown that the Hall conductance of d;, given by Aei/2x, 
is an integer minus 1 fpMl Mz for each subb-bnd. 

2.1.3. Diophantine equation and its application. In the absence of disorder, the Hall 
conductance of the rth band has been found to be ( t ,  -&-I) ,  where t, can be determined 
by the Diophantine equation [IO, 181 

~~ 

s,q + t,p = r (2.15) 

with Is,/ Q fp. As disorder is introduced, q degenerate subbands of the rth band will 
separate in the k-space, though they may still overlap in the energy space with each other, 
or with the rest of the MlMz subbands. Some of the MI& subbands will cany quantized 
Hall currents, but the total Hall current remains (tr - tr-l)  if this band is separated from 
others by gaps. This certainly provides a criterion that the numerical results should satisfy. 
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2.2. Flux + = f 
Figure 1 shows the numerical results for a typical sample, where the magnetic field is given 
by p / q  = 9. This is the simplest fraction of q / p  which reveals interesting features of 
the Hall conductance, because other bands besides the central one also carry Hall currents. 
Without disorder, three bands in the Hofstadter spectrum carry theHall current (1, -1, I), 
respectively. In this calculation, square symmetry has been used where V = V' and a = b. 
L, and Lz are chosen to be 4a, so it is made of eight magnetic unit cells and consequently 
gives 24 subbands. The degree of disorder is characterized by the ratio & / V  for a fixed 
concentration of scatterers. Four cases with V , / V  = 0.2, 0.4, 0.6 and 0.8 have been 
computed while the configuration of the random scatterers remains the same. 

t Q 
g 

i 

Figure 1. The calculated Hall conductance for one sample is ploued in (A) against the subband 
index i. Four v~ucucs of V l I V  = 0.2.0.4, 0.6 and 0.8 ace calculated for q i p  = f .  The 
corresponding density of states (dotted line). and density of current-carrying states (full line) 
can be found in (B) as a function of rescaled energy E / V .  The total density is one particle per 
2aP ma 

The calculated Hall conductance is plotted in figure 1(A). It is precisely quantized for 
each subband. For weak disorder,, such as & / V  = 0.2, the criterion mentioned earlier 
is satisfied. For example, the first eight subbands, which actually form one band and are 
separated from others by a gap, cany the total of one Hall current. One notices that the 
Hall currents in one band are widely distributed in its subbands. Therefore it is necessary to 
locate these subbands in the energy space. This can be depicted explicitly by the density of 
states (151, which is calculated by counting the number of eigenvalues in an energy interval. 
The currenr-carrying states are identified fo be those subbands whose Hall conductance is 
different from zero. The density of states for each subband is calculated, and the total density 
of states at a given energy is obtained by adding the contributions from all subbands. To 
obtain the density of current-carrying states, this summation is carried out with a weight 
which is unity for current-carrying subbands and zero otherwise. The results are shown 
in figure 1(B) where the total density is normalized to 1 / 2 ~ 1 ~ .  Though the Hall cuments 
are carried by several subbands, they may not be distinguishable in the energy space. As 
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Figure 2. The histogram of the sample averaged 
density of states (dolted line) and density of current- 
canying states (full line) is shown for q / p  = f. The 
numbers on the right-hand side give the values of 
V l I V .  

disorder increases, some current-canying states merge and annihilate with those carrying 
currents of opposite sign. 

The distribution of the Hall currents depends strongly on the configuration of the 
scatterers. In general, the current-carrying states can appear anywhere in energy space, but, 
of course, with a probability which is determined by the size of the system and localization 
length. It is most probable for them to appear at certain energies, while the probability of 
being elsewhere is exponentially small. To locate these energies, the average over different 
configurations needs to be taken for the same K / V .  65 samples have been calculated, and 
for each sample there is also a calculation when the sign of all the scatterers is reversed. 
However, this does not necessarily give the same results as simply changing the sign of the 
energy E from previous calculations. One needs to further shift all the scatterers coherently 
by a displacement of (fa. fb). This effectively reverses the sign of the periodic potential. 
Therefore the averaged density of states is symmetric about E = 0. The doned line is the 
density of states, and the full line represents the current-carrying states in figure 2. It is 
demonstrated that, as disorder is increased, the gaps shrink and finally vanish. Meanwhile, 
two current-canying states in the lower and upper bands move closer to the central one. 
For a particular degree of disorder, three current-canying states merge together at the centre 
of the spectrum. This gives a resultant Hall conductance of unity, as is expected since one 
can ignore the periodic potential in a strong-disorder potential. 

2.3. Flux 6 = 2 3 

Let us then consider q / p  = $ Equation (2.15) gives the Hall currents (-1, 2, -1, 2, -1) 
for five bands, respectively. The calculation is made where L1 = LT = 3a. The Hall 
conductance is plotted in figure 3(A) for eight values of V,/ V .  The corresponding density 
of current-canying states is shown in figure 3(B). As disorder increases, the current-carrying 
states in the second band, or similarly in the fourth band as well, split into two, each of 
which carries one Hall conductance. Then one of them and the current-carrying states in 
the first band, or the fifth band, respectively, where the Hal1 current of -1 appears, move 
towards each other. The (1, -1) pairs are formed, which disappear finally if one further 
increases the disorder. For a certain degree of disorder, for example VI / V = 0.2 in this 
sample, the resultant spectrum is similar to that of q / p  = f -  The smaller gaps have 
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Figure 3. The calculated Hall conductance for one sample is plotted in (A) against the subband 
index i .  The numbers on the right-hand side give eight values of V,/V for q / p  = 3 .  Figure 
3(B) draws the corresponding density of current-wing states (full line). The total density of 
states is also drawn (dotted line) for V1lV = 0.2 in (5). 

vanished and there are three bands separated by two gaps. They carry the Hall currents of 
(1, -1, 1). respectively. 

3. Hall conductance at fixed filling 

If the Hofstadter spectrum is resolved in high-mobility samples, there is no doubt that a 
plateau structure can be measured as a function of Fermi energy, or carrier concentration, 
for a fixed magnetic magnetic field [lo]. However, it seems much easier experimentally 
to vary the magnetic field rather than the carrier concentration. It is not so obvious that a 
plateau can still be observed as a function of magnetic field. This is certainly unlikely if 
there is no disorder. Specifically, consider a fixed filling factor v = 4. If one starts with a 
magnetic field at p / q  = $, the Fermi energy lies in the gap between the lower and central 
bands. This gives a quantized Hall conductance of one ( e2 /h ) .  Let us then increase the 
magnetic field to p / q  = 3. The Fermi energy now lies in the second band and the measured 
Hall conductance is not quantized. In fact, while the magnetic field is increased, the band 
structure changes in a very complicated way according to the flux 1171. Consequently, this 
results in a rapid oscillation in the Hall conductance at the Fermi energy. 

The situation may, however, be different if disorder is present. Fine svuctures 
characterized by small gaps in the Hofstadter spectrum will no longer exist. The current- 
carrying states will be rearranged according to the rules described in the last section. Take 
p / q  = 5 for example. The total density of states is drawn in figure 3(B) for V,/V = 0.2. 
The localized states, which are identified as those which do not cany Hall currents, can be 
found on both sides of the gaps. To avoid sample fluctuation, the averaged density of states 
and the density of the current-carrying states have been calculated. As shown in figure 4, 
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the current-carrying states peak at the energy E, = 0, f1.88, but spread over the entire 
band. The Fermi energy lies at E = -1.72 for a filling of U = 4. It can be concluded that 
the measured Hall conductance is quantized only if a singular energy in each band carries 
the Hall current, in analogy to the usual integer quantum Hall effect. It is necessary to 
investigate the localization in’ this system. 

There are many ways to study the localization. One approach is to observe whether the 
peak of the current-carrying states shrinks when Li and Lz become larger [15], but this has 
not been pursued in this paper. Instead, the Thouless number method 19, 19-21] has been 
used to estimate directly the localization length f ( E ) .  This method has great advantages for 
carrying out numerical calculations since only the eigenvalues are needed. The Thouless 
number is defined in the form 

g(L) = L’D(E)EZ - exp[-~/:(~)] (3.1) 

where it is assumed that L ,  = Lz = L. D ( E )  is the density of states, and the inverse of 
LzD(E)  measures the level spacing. m is the shift of an energy level due to the change 
in boundary conditions. Specifically, while keeping the periodic boundary condition in the 
n direction, namely kl = 0, the energy shift is obtained ham the eigenvalues satisfying 
periodic (kz = 0) and antiperiodic (kz = rr/Lz) boundary conditions in the y direction, 
respectively. To avoid sample fluctuation, the geometric average of m has been taken over 
different samples. For two-dimensional systems, g ( L )  falls off exponentially with respect 
to L in the localization regime and remains constant for extended states. To estimate the 
localization length, two sizes with L = 6a and 9a have been calculated. 

The results are shown in figure 4, where the inverse localization length indeed 
approaches zero at singular energies E ,  = 0, f1 .80 .  These energies shift slightly from 
the values obtained previously. It is possible that this method gives an effectively larger 
value of V,/V than the previous one by comparing their density of states. However, this 
does not affect the conclusion that the Hall currents are canied at some particular energies. 
The locations of these energies obtained by the previous method are more accurate, since the 
wavenumbers have been integrated. Furthermore, there exist local minima at E = 42.36, 
and correspondingly secondary peaks at E = h2.44, in the density of current-carrying 
states. This is where a (1, -1) pair is just annihilated, and the extended states there turn 
out to be localized.. 

and 5. Disorder smears 
out smaller gaps and one Hall cment is carried at a particular energy. Therefore, if the 
filling is fixed at v = 4 and the magnetic field is increased from q / p  = $ to :, the 
Fermi energy always lies in the localized regime.  this^ certainly suggests a plateau in the 
measurement. It is essential that the s@ength of disorder fits the requirement. Too much 
disorder will destroy the whole structure. If disorder is too weak, the Fermi energy may be 
located in the extended regime. 

One expects similar features for the fractions between q / p  = 

4. Tight-binding electrons 

In the opposite limit where the lattice potential dominates, the system is well described 
by the tight-binding model. It is possible to realize this model experimentally in a sample 
modulated by~antidots. The Hamiltonian can be written as [19, 221 

(4.1) 
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Figure 4. The sample avenged density of states 
(broken line) and density of current-canying states (full 
line) are plotted for VI f V = 0.2 and q/p = 2. The 
full dots show the rescnled inverse localizatio? length 
$ - ' ( E /  V ) R .  whose scale is shown by the right y axis. 
n is the period of the periodic potential. 

Fiyre 5. Thehis togm ofthe sample averaged density 
of states (dotted line) and density of current-carrying 
states (full iine) is shown for tigh-binding electrons in 
a magnetic field given by q / p  = 4. The numbers on 
the right-hand side show the degree of disorder. namely 
W l r .  The tatd density is normalized to one particle per 
unit cell. 

where (ij) refers to the nearest neighbours. ei is the site energy, which is a random number 
between -$W and f W  with a uniform probability of 1/W. The effect of the magnetic 
field is introduced by the Peierls substitution, 

til = t exp (i$ dj A . dl) (4.2) 

The square lattice and the Landau gauge are chosen. The magnetic flux through each unit 
cell is q5/+o = q / p ,  where the notation used in section 2 has been reversed for convenience. 
The periods of random site energy are L in both directions. L should be an integer multiple 
of pa where a is the period of the lattice. This defines a finite L2 x L2 matrix. 

If one writes the solution 

h,, = exp(ik1n + ikzm)~.,, (4.3) 

where n, m are discrete labels of lattice sites, the effective hopping term, with respect to 
U,.,, becomes 

(4.4) 

Similarly, the velocity operator can be written as the partial derivative of the Hamiltonian 
with respect to the wavenumbers. Therefore the method described in equations (2.10)- 
(2.14) is still valid for the calculation of the Hall conductance in this limit. However, in 
equation (2.13) X' should be the same as X, and equation (2.13) gives an integer multiple 
of 2n directly. In the absence of disorder, the Hall conductance of the rth band is given 
by (sr - ~ ~ - 1 )  in equation (2.15) instead. 

t:. $, - - * ij exp[ik. 0' - i)]. 
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First the sample with a magnetic field given by q / p  = f is considered. Three bands 
carry the Hall conductance (1, -2, 1). respectively. L is chosen to be 6a. There are 
36 subbands, each set of 12 subbands forming a band for weak disorder. Similarly, the 
density of states and the density of current-carrying states are calculated for four values of 
W / t  = 2, 4, 6 and 8. Figure 5 shows the result where 100 samples have been averaged. 
When the sign of all the site energies is reversed, the Hall conductance and density of states 
can be obtained from the previous results simply by reversing the energy. This is because 
the site energies are the only diagonal elements and the hopping terms give a symmetric 
spectrum about zero energy. When disorder is introduced, the current-carrying states in the 
central band, which carry -2 Hall currents, split into two, each carrying -1 Hall current. 
As disorder increases, they merge with those in neighbouring bands which cany 1 Hall 
current. Then two (1, -1) pairs are formed and annihilated for a larger degree of disorder. 

It is not surprising that one finds a similar pattern for q /p  = 3. The Hall conductance 
for each band is (-2, 3, -2, 3, -2). respectively. The Hiill conductances for eight 
values of W / t  are shown in figure 6(A) when L = 5a, and the corresponding density of 
current-carrying states is shown in figure 6(B). For W/t = 0.8, the Hall conductance of 1 
in the second band has been annihilated with that of -1 in the first band, and similarly for 
the fourth and fifth bands. As disorder further increases, for example W/t = 1.9, two Hall 
currents in the second band split. For W/t = 3.2, the current-carrying states in the central 
band start to split. Now this is similar to the case of q / p  = i, except there is a (1, -1) 
pair which has not been annihilated in tiis sample. 
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Figure 6. The calculated Hall conductance for one sample is plotted in (A) against the subband 
index i for eight values of W/! and q / p  = $. The carresponding density of cumntcarrylng 
states (full line) is drawn in (B). 

Finally, the localization properties in this limit are also investigated. Similarly based 
on the Thouless number method, numerical calculations have been made of the localization 
length for q / p  = 5. Two sizes with L = 15a and 18a are considered. The results are shown 
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in figure 7. For W / t  = 3, singular energies in the lower and upper bands are observed to 
carry the currents. However, the localization in the central band, where the Hall currents of 
2 appear, seems to be suppressed. A finite region of energy may be occupied by extended 
states. For W / t  = 5 ,  the gaps have vanished, and an even wider region of extended states 
emerges. In this case, there are two ( I ,  - 1 )  pairs. It is resonable to expect the same features 
in the previous limit of split Landau levels, for example for q / p  = and weak disorder 
the second and fourth bands carry two Hall currents. Further considerations, for example 
using one-parameter scaling theory, may possibly shed light on this problem. 

5 *' . I , I / ,  , Figure 7. The rescaled inverse localization le"@ 
-4 -2 0 2 4 B-'(Elr)a is plotted as a function of rescaled energy 

. 
0 ,'-','A 

E/t EII  for q l p  = f and W l t  = 3, 5. 

5. Proposed phase diagrams 

The above results can be summarized to give a phase diagram, where the locations of 
current-carrying states in the energy space are shown as a function of disorder. Figure S(A) 
shows the diagram for split Landau levels. Starting with the flux p / q  = f .  there are eight 
bands with two central ones touching at zero energy. The first three bands cany the Hall 
currents (2. -3, 2),  respectively, and similarly (2,  -3, 2) for the last three. The two 
central bands carry 1 Hall current in total. Without disorder, the Hall currents are carried 
by the entire band. As disorder is introduced, extended states appear only in a region 
around the critical energies in each band. The critical energies in the Hofstadter spectrum 
are defined where the density of states diverges logarithmically. As mentioned in the last 
section, it is possible that these regions have finite widths if lu~l > 1. However, it has been 
assumed that these regions are actually singular energies. The corresponding modification 
can be easily made if indeed these regions have finite widths. For a certain degree of 
disorder, for example above the broken line in figure @A), the diagram is similar to that for 
+5 = p / q  = :. When disorder is further increased above the broken line, the diagram takes 
the shape of +5 = p / q  = f. The diagrams for other sequences of p / q  can be generated 
similarly. 

The diagram for the tight-binding electrons is plotted in figure S(B). The flux is chosen 
to be +5 = q / p  = +, where the Hall currents are (-2, 3, -2, 3, -2) for each band. For 
sufficiently strong disorder above the broken line, the diagram of q / p  = f is reproduced. 

The accurate values of disorder where 
annihilation occurs can be obtained from numerical calculations. 

These two diagrams are qualitative ones. 
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Energy Energy 

Figure 8. The proposed phase diagrams are drawn For the split Landau levels in (A) with the 
flux 4 = p / q  = :, and for tight-binding electrons in (B) with the flux @ = q / p  = 3. 

6. Conclusions 

In this paper, two-dimensional electrons subject to a magnetic field and simultaneously 
modulated by a periodic potential have been studied in the presence of disorder. Numerical 
calculations have been made of the Hall conductance~for two limiting cases which generate 
the Hofstadter spectrum. The Hall conductance is obtained by the total phase change of the 
wavefunction when a contour is taken along the boundary of the unit cell in wavenumber 
space. This study has been focused on how the structure of Hall conductance changes with 
disorder. 

In section 2, the limit where the Landau level is perturbed by a weak periodic potential 
is considered. Two fractions of the flux are calculated. For @ = 2- the lower and upper 
bands both cany 1 Hall current. As disorder is increased, the gaps start to shrink and the 
current-carrying states in the lower and upper bands move towards the central band where 
-1 Hall current is carried. For sufficiently strong disorder, the gaps vanish and there is 
only 1 Hall current carried at the centre of the broadened Landau level. For @ = $, there 
are two bands carrying 2 Hall currents. As disorder is increased. the states carrying 2 Hall 
currents will split into two with each carrying 1 Hall current, one of which will merge and 
annihilate with that in the neighbouring band carrying -1 Hall current. For a certain degree 
of disorder, the structure of Hall conductance becomes similar to that of q5 = 4. 

In section 3, the localization length has been obtained by using the Thouless number 
method. It has been observed that the Hall current is still carried by a singular energy in a 
band if the Hall conductance is either 1 or -1. Based on this, it is concluded that a plateau 
can' be measured as a function of magnetic field for one-third filling of Landau levels. 

In section 4, the opposite limit is studied where the periodic potential dominates. The 
system is described by the tight-binding model with random site energies. The formulae 
used in section 2 are still applicable when minor modifications are made. The splitting and 
annihilation of Hall current-carrying states are also observed. There is also a calculation 
of localization length. But it is not conclusive whether extended states locate at singular 
energies if a band carries higher Hall currents or if there is a (1, -1) pair. The possibility 
of mobility edges needs to be further investigated. 

The results obtained in sections 2 and 4 are summarized in section 5 to propose 
qualitative diagrams, where the flow of extended states with disorder is demonstrated clearly. 
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